前沿报告
专业课程

研究方法与写作

来源:   作者:  发布时间:2021年05月09日  点击量:

课程老师:骆汉宾教授

课程助教:刘佳静 叶可鸣 张佳乐

1. 课程目标

本课程是土木工程专业的一门主要专业课程。课程采用大量专业文献为阅读材料,多维度纵深授课。教学内容包括研究方法与论文撰写两部分。研究方法部分要求学生了解和学习适当选题、文献检索与阅读、常用的定性与定量工具等具体方法,论文撰写部分要求学生掌握研究论文的宏观语类结构,摘要、引言、研究现状、方法、讨论、结论、参考文献等各部分的组成要素与语言特征。此外,包括让学生了解专业期刊特色、用稿要求、投稿过程等投稿技巧。教学采用多媒体网络技术辅助,并采用讲授、阅读、分析、写作、讨论、展示、陈述、评阅等丰富多样的教学方法,使学生具备基本的学术研究与论文撰写能力。

本课程目标为:1.使学生掌握基本定性、定量等各种学术研究方法;2.使学生认识、掌握国际学术论文的基本目的、结构、要素;3.使学生具备分析、理解、使用规范的学术语言的能力;4.使学生掌握基本的国际学术期刊的特色导向和话语权结构;5. 培养学生的基本的科学精神和科研素养。

2. 教学内容与时间安排


3.考核方式

(1)考勤 15%

• 无特殊原因不得缺勤;

• 无故缺席两次课及以上扣除所有考勤分数。


(2)随堂汇报 25%

• 汇报目的:检验学生的研究能力与表达能力;

• 汇报主题:研究选题汇报;

• 汇报形式:每位学生通过课程的学习和相关文献的研读,凝炼专业相关的科学问题/工程问题并形成研究选题,制作汇报ppt,随堂将随机抽取同学进行汇报。汇报时间控制在10分钟以内,汇报结束后进行5分钟的师生问答;

• 汇报内容:ppt的主要内容需包括:研究选题、研究目的及意义、国内外研究现状、研究技术路径;

• 提交时间:ppt请于2021.6.23号之前提交。


(3)研究计划(Research proposal)60%

• 提交材料:提交 5000 字左右的研究计划(鼓励英文撰写),研究计划需包含研究背景、研究目的及意义、国内外研究现状、主要研究内容、研究进度计划、参考文献;

• 提交时间:2021.6.23号之前;

• 格式要求:中文参考华中科技大学本科生毕业设计(论文)规范化要求文件;英文参考 Frontiers of Engineering Management 期刊投稿格式。

http://journal.hep.com.cn/fem/EN/column/column319.shtml


4.课程制度

• 若学生因病或其他个人原因无法上课,请通过邮件告知任课老师,否则扣除考勤分;

• 上课专心听讲,不得从事其它无关事项;

• 所有同学务必在规定的四个课时完成随堂汇报汇报,否则扣除随堂汇报分数;

• 研究计划(Research proposal)应在规定时间内提交。若无特殊原因,延迟一周以内提交扣除20%的分数,超过一周则按未提交处理;严格注明参考文献引用出处,若发现研究计划中有严重抄袭行为,按照学校相关规定严肃处理。

5.文献查询网站: 以下附录提供了文献查阅网址链接,供学生查询学术论文

·中文

知网:https://www.cnki.net/

万方:https://g.wanfangdata.com.cn/index.html

维普:http://lib.cqvip.com/

CSSCI:http://cssci.nju.edu.cn/


·英文

ScienceDirect: https://www.sciencedirect.com/

EI : https://www.engineeringvillage.com/search/quick.url

Wiley: https://onlinelibrary.wiley.com/

Springer: https://link.springer.com/

Google scholar: https://ac.scmor.com/



6.延伸阅读材料: 以下附录提供了土木工程研究前沿的延伸阅读材料,供有兴趣的学生进一步学习相关知识及准备研究报告。


l 基于模型定义的工程产品

[1] P. Patlakas, A. Livingstone, R. Hairstans, and G. Neighbour, “Automatic code compliance with multi-dimensional data fitting in a BIM context,” Adv. Eng. Informatics, vol. 38, no. June, pp. 216–231, 2018.

[2] S. Jang and G. Lee, “Impact of organizational factors on delays in bim-based coordination from a decision-making view: A case study,” J. Civ. Eng. Manag., vol. 24, no. 1, pp. 19–30, 2018.

[3] S. Jiang, N. Wang, and J. Wu, “Combining BIM and Ontology to Facilitate Intelligent Green Building Evaluation,” J. Comput. Civ. Eng., vol. 32, no. 5, pp. 1–15, 2018.

[4] R. de Klerk, A. M. Duarte, D. P. Medeiros, J. P. Duarte, J. Jorge, and D. S. Lopes, “Usability studies on building early stage architectural models in virtual reality,” Autom. Constr., vol. 103, no. July 2016, pp. 104–116, 2019. [5] S. Mehrbod, S. Staub-French, N. Mahyar, and M. Tory, “Characterizing interactions with BIM tools and artifacts in building design coordination meetings,” Autom. Constr., vol. 98, no. October 2018, pp. 195–213, 2019.

[6] J. Wolfartsberger, “Analyzing the potential of Virtual Reality for engineering design review,” Autom. Constr., vol. 104, no. November 2018, pp. 27–37, 2019.

[7] P. Ghannad, Y. C. Lee, J. Dimyadi, and W. Solihin, “Automated BIM data validation integrating open-standard schema with visual programming language,” Adv. Eng. Informatics, vol. 40, no. January, pp. 14–28, 2019. [8] N. Gui, C. Wang, Z. Qiu, W. Gui, and G. Deconinck, “IFC-Based Partial Data Model Retrieval for Distributed Collaborative Design,” J. Comput. Civ. Eng., vol. 33, no. 3, pp. 1–10, 2019.

[9] Y. Hu and D. Castro-Lacouture, “Clash Relevance Prediction Based on Machine Learning,” J. Comput. Civ. Eng., vol. 33, no. 2, 2019.

[10] H. Lai, X. Deng, and T. Y. P. Chang, “BIM-Based Platform for Collaborative Building Design and Project Management,” J. Comput. Civ. Eng., vol. 33, no. 3, pp. 1–15, 2019.

[11] W. Wu, J. Hartless, A. Tesei, V. Gunji, S. Ayer, and J. London, “Design Assessment in Virtual and Mixed Reality Environments: Comparison of Novices and Experts,” J. Constr. Eng. Manag., vol. 145, no. 9, 2019. [12] E. Rigger, A. Lutz, K. Shea, and T. Stankovic, “Estimating the impact of design automation: The influence of knowledge on potential estimation,” Proc. Int. Conf. Eng. Des. ICED, vol. 2019-August, no. AUGUST, pp. 1943–1952, 2019.

[13] C. Engineering, “Computing in Civil Engineering 2019 439,” no. Mvd, pp. 439– 446, 2019.

[14] E. Rigger, T. Vosgien, K. Shea, and T. Stankovic, “A top-down method for the derivation of metrics for the assessment of design automation potential,” J. Eng. Des., vol. 31, no. 2, pp. 69–99, 2020.

[15] C. Unified and D. Plan, “Visualize Smart Growth development with Parametric BIM A case study of Columbia Unified Development Plan.”

[16] H. Lu, D. Park, C. Liu, G. Ji, and Z. Tong, Computer-Aided Architectural Design “Hello, Culture”: 18th International Conference, CAAD Futures 2019, Selected Papers, vol. 1028. Springer Singapore, 2019. [17] N. O. Nawari, “Generalized Adaptive Framework for Computerizing the Building Design Review Process,” J. Archit. Eng., vol. 26, no. 1, 2020.

[18] H. Ying and S. Lee, “Automatic Detection of Geometric Errors in Space Boundaries of IFC-BIM Models Using Monte Carlo Ray Tracing Approach,” J. Comput. Civ. Eng., vol. 34, no. 2, pp. 1–20, 2020.

[19] K. Shea, R. Aish, and M. Gourtovaia, “Towards integrated performance-driven generative design tools,” Autom. Constr., vol. 14, no. 2 SPEC. ISS., pp. 253–264, 2005.

[20] Y. Madkour, O. Neumann, and H. Erhan, “Programmatic Formation: Practical Applications of Parametric Design,” Int. J. Archit. Comput., vol. 7, no. 4, pp. 587–603, 2009.

[21] H. Erhan, N. H. Salmasi, and R. Woodbury, “ViSA: A Parametric Design Modeling Method to Enhance Visual Sensitivity Control and Analysis,” Int. J. Archit. Comput., vol. 8, no. 4, pp. 461–483, 2010.

[22] N. Shireen, H. Erhan, D. Botta, and R. Woodbury, “Parallel development of parametric design models using subjunctive dependency graphs,” ACADIA 2012 - Synth. Digit. Ecol. Proc. 32nd Annu. Conf. Assoc. Comput. Aided Des. Archit., vol. 2012-October, pp. 57–66, 2012.

[23] H. I. Erhan, R. Sánchez, R. F. Woodbury, V. Mueller, and M. Smith, “Visual Narratives of Parametric Design History,” Proc. 30th eCAADe Conf. Prague, vol. 1, pp. 259–268, 2012.

[24] H. Hofmeyer and J. M. Davila Delgado, “Automated design studies: Topology versus One-Step Evolutionary Structural Optimisation,” Adv. Eng. Informatics, vol. 27, no. 4, pp. 427–443, 2013.

[25] V. Quintana, L. Rivest, R. Pellerin, and F. Kheddouci, “Re-engineering the Engineering Change Management process for a drawing-less environment,” Comput. Ind., vol. 63, no. 1, pp. 79–90, 2012.

[26] J. Lentes, H. Eckstein, and N. Zimmermann, A platform to integrate manufacturing engineering and product lifecycle management, vol. 45, no. 6 PART 1. IFAC, 2012.

[27] M. Messaadia, F. Belkadi, B. Eynard, and A. E. K. Sahraoui, System engineering and PLM as an integrated approach for industry collaboration management, vol. 14, no. PART 1. IFAC, 2012.

[28] N. Wan, R. Mo, L. Liu, and J. Li, “New methods of creating MBD process model: On the basis of machining knowledge,” Comput. Ind., vol. 65, no. 4, pp. 537–549, 2014.

[29] D. U. Furrer, D. M. Dimiduk, J. D. Cotton, and C. H. Ward, “Making the Case for a Model-Based Definition of Engineering Materials,” Integr. Mater. Manuf. Innov., vol. 6, no. 3, pp. 249–263, 2017.

[30] A. M. D. Miller, N. W. Hartman, T. Hedberg, A. B. Feeney, and J. Zahner, “Towards identifying the elements of a Minimum Information Model for use in a ModelBased Definition,” ASME 2017 12th Int. Manuf. Sci. Eng. Conf. MSEC 2017 collocated with JSME/ASME 2017 6th Int. Conf. Mater. Process., vol. 3, no. June, 2017.

[31] T. D. Hedberg, N. W. Hartman, P. Rosche, and K. Fischer, “Identified research directions for using manufacturing knowledge earlier in the product life cycle,” Int. J. Prod. Res., vol. 55, no. 3, pp. 819–827, 2017.

[32] S. P. Ruemler, K. E. Zimmerman, N. W. Hartman, T. Hedberg, and A. Barnard Feeny, “Promoting model-based definition to establish a complete product definition,” J. Manuf. Sci. Eng. Trans. ASME, vol. 139, no. 5, pp. 1–24, 2017.

[33] S. M. Feeman, L. B. Wright, and J. L. Salmon, “Exploration and evaluation of CAD modeling in virtual reality,” Comput. Aided. Des. Appl., vol. 15, no. 6, pp. 892–904, 2018.

[34] A. M. D. Miller, R. Alvarez, and N. Hartman, “Towards an extended model-based definition for the digital twin,” Comput. Aided. Des. Appl., vol. 15, no. 6, pp. 880–891, 2018.

[35] P. Zaujec, J. Gulanová, and L. Gulan, “Methodology of modular design of construction machines,” Comput. Aided. Des. Appl., vol. 15, no. 6, pp. 927–934, 2018.

[36] G. Yue, J. Liu, and Y. Hou, Design Rationale Knowledge Management :, vol. 2. Springer International Publishing, 2018.

[37] L. Jokinen and S.-P. Leino, “Hidden product knowledge: problems and potential solutions,” Procedia Manuf., vol. 38, no. 2019, pp. 735–744, 2019.

[38] S. yuan Chen, “Use of neural network supervised learning to enhance the light environment adaptation ability and validity of Green BIM,” Comput. Aided. Des. Appl., vol. 15, no. 6, pp. 831–840, 2018.

[39] J. S. Chou, M. Y. Cheng, Y. M. Hsieh, I. T. Yang, and H. T. Hsu, “Optimal path planning in real time for dynamic building fire rescue operations using wireless sensors and visual guidance,” Autom. Constr., vol. 99, no. October 2018, pp. 1–17, 2019.

[40] F. Mirahadi, B. McCabe, and A. Shahi, “IFC-centric performance-based evaluation of building evacuations using fire dynamics simulation and agent-based modeling,” Autom. Constr., vol. 101, no. October 2018, pp. 1–16, 2019.

[41] J. Zhang, J. Guo, X. Liu, H. Xiong, and D. Zhang, “A framework for an intelligent and personalized fire evacuation management system,” Sensors (Switzerland), vol. 19, no. 14, 2019.

[42] Z. Xu, W. Wei, W. Jin, and Q. rui Xue, “Virtual drill for indoor fire evacuations considering occupant physical collisions,” Autom. Constr., vol. 109, no. September 2019, p. 102999, 2020.

[43] 徐海峰. 基于 MBD 的飞机数字化装配工艺协同设计研究[D].南京航空航天大 学,2019.

[44] 李晶. 基于 MBD 的智能化工艺设计技术研究[D].南京航空航天大学,2018.

[45] 尹旭东. 基于模型定义的知识重用及其在水工配筋上的应用实现[D].电子科 技大学,2014.

[46] 谢坤峰. 基于模型定义的 CAD 信息提取和重用方法的研究[D].合肥工业大 学,2017.

[47] 辛宏妍. 面向数字建造的工程设计组织模式研究[D].华中科技大学,2017.

[48] 刘立肖. 迁移建筑物的参数化建模和有限元分析[D].天津大学,2009.

[49] 胡启阳. 线性规划算法在参数化 BIM 模型优化中的应用[D].天津大学,2018. [50] 陈达. 以 Voronoi 为例的形态自主构形参数化设计研究[D].天津大学,2017. [51] 唐博. 参数化设计在 BIM 平台下的构件化策略[D].天津大学,2014.

[52] 曹笛. 基于防火性能化设计的综合交通枢纽规划策略及数字模拟方法[D].天 津大学,2016.

[53] 黄茜. 节能建筑模块化体系设计与评价及仿真优化方法研究[D].武汉理工大 学,2012.


l 工程物联网


[1]Edmondson, V., Cerny, M., Lim, M., Gledson Barry and Lockley, S., & Woodward, J. (2018). A smart sewer asset information model to enable an `Internet of Things’ for operational wastewater management. AUTOMATION IN CONSTRUCTION, 91, 193–205.

[2]Li, X., Shen, G. Q., Wu, P., & Yue, T. (2019). Integrating Building Information Modeling and Prefabrication Housing Production. AUTOMATION IN CONSTRUCTION, 100, 46–60.

[3]Zhou, C., & Ding, L. Y. (2017). Safety barrier warning system for underground construction sites using Internet-of-Things technologies. AUTOMATION IN CONSTRUCTION, 83, 372–389.

[4]Lin, Y.-S., Chan, R. W. K., & Tagawa, H. (2020). Earthquake early warning-enabled smart base isolation system. AUTOMATION IN CONSTRUCTION, 115.

[5]Anumba, C. J., & Ruikar, K. (2002). Electronic commerce in construction - trends and prospects. AUTOMATION IN CONSTRUCTION, 11(3), 265–275.

[6]Asadzadeh, A., Arashpour, M., Li, H., Ngo, T., Bab-Hadiashar, A., & Rashidi, A. (2020). Sensor-based safety management. AUTOMATION IN CONSTRUCTION, 113.

[7]Woo, S., Lee, E., & Sasada, T. (2001). The multiuser workspace as the medium for communication in collaborative design. AUTOMATION IN CONSTRUCTION, 10(3), 303–308.

[8]Ibem, E. O., & Laryea, S. (2014). Survey of digital technologies in procurement of construction projects. AUTOMATION IN CONSTRUCTION, 46, 11–21.

[9]Dave, B., Kubler, S., Framling, K., & Koskela, L. (2016). Opportunities for enhanced lean construction management using Internet of Things standards. AUTOMATION IN CONSTRUCTION, 61, 86–97.

[10]Ozturk, G. B. (2020). Interoperability in building information modeling for AECO/FM industry. AUTOMATION IN CONSTRUCTION, 113.

[11]Martin-Garin, A., Millan-Garcia, J. A., Bairi, A., Milian-Medel, J., & Sala-Lizarraga, J. M. (2018). Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit. AUTOMATION IN CONSTRUCTION, 87, 201–214.

[12]Slaton, T., Hernandez, C., & Akhavian, R. (2020). Construction activity recognition with convolutional recurrent networks. AUTOMATION IN CONSTRUCTION, 113.

[13]Zhou, C., Luo, H., Fang, W., Wei, R., & Ding, L. (2019). Cyber-physical-system-based safety monitoring for blind hoisting with the internet of things: A case study. AUTOMATION IN CONSTRUCTION, 97, 138–150.

[14]Kanan, R., Elhassan, O., & Bensalem, R. (2018). An IoT-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. AUTOMATION IN CONSTRUCTION, 88, 73–86.

[15]Rashid, K. M., Louis, J., & Fiawoyife, K. K. (2019). Wireless electric appliance control for smart buildings using indoor location tracking and BIM-based virtual environments. AUTOMATION IN CONSTRUCTION, 101, 48–58.

[16]Tao, X., Mao, C., Xie, F., Liu, G., & Xu, P. (2018). Greenhouse gas emission monitoring system for manufacturing prefabricated components. AUTOMATION IN CONSTRUCTION, 93, 361–374.

[17]Li, J., Greenwood, D., & Kassem, M. (2019). Blockchain in the built environment and construction industry: A systematic review, conceptual models and practical use cases. AUTOMATION IN CONSTRUCTION, 102, 288–307.

[18]Chen, Y., & Han, D. (2018). Water quality monitoring in smart city: A pilot project. AUTOMATION IN CONSTRUCTION, 89, 307–316.

[19]Naser, M. Z., & Kodur, V. K. R. (2018). Cognitive infrastructure - a modern concept for resilient performance under extreme events. AUTOMATION IN CONSTRUCTION, 90, 253–264.

[20]Li, C. Z., Xue, F., Li, X., Hong, J., & Shen, G. Q. (2018). An Internet of Things-enabled BIM platform for on-site assembly services in prefabricated construction. AUTOMATION IN CONSTRUCTION, 89, 146–161.

[21]Boje, C., Guerriero, A., Kubicki, S., & Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. AUTOMATION IN CONSTRUCTION, 114.

[22]Samuelson, O., & Bjork, B.-C. (2014). A longitudinal study of the adoption of IT technology in the Swedish building sector. AUTOMATION IN CONSTRUCTION, 37, 182–190.

[23]Wong, J. K. W., Ge, J., & He, S. X. (2018). Digitisation in facilities management: A literature review and future research directions. AUTOMATION IN CONSTRUCTION, 92, 312–326.

[24]Cheng, J. C. P., Chen, W., Chen, K., & Wang, Q. (2020). Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. AUTOMATION IN CONSTRUCTION, 112.

[25]Louis, J., & Dunston, P. S. (2018). Integrating IoT into operational workflows for real-time and automated decision-making in repetitive construction operations. AUTOMATION IN CONSTRUCTION, 94, 317–327.

[26]Liu, Z., & Li, S. (2020). A sound monitoring system for prevention of underground pipeline damage caused by construction. AUTOMATION IN CONSTRUCTION, 113.

[27]Martens, B., Turk, Z., Bjork, B. C., & Cooper, G. (2003). Re-engineering the scientific knowledge management process: the SciX project. AUTOMATION IN CONSTRUCTION, 12(6), 677–687.

[28]Shi, Q., Ding, X., Zuo, J., & Zillante, G. (2016). Mobile Internet based construction supply chain management: A critical review. AUTOMATION IN CONSTRUCTION, 72(2), 143–154.

[29]Madrazo, L., & Weder, A. (2001). Aalto on the Internet: architectural analysis and concept representation with computer media. AUTOMATION IN CONSTRUCTION, 10(5), 561–575.

[30]Dave, B., & Koskela, L. (2009). Collaborative knowledge management-A construction case study. AUTOMATION IN CONSTRUCTION, 18(7), 894–902.

[31]Lam, K. C., & Ng, S. T. (2006). A cooperative Internet-facilitated quality management environment for construction. AUTOMATION IN CONSTRUCTION, 15(1), 1–11.

[32]Xu, Z., Zhang, L., Li, H., Lin, Y.-H., & Yin, S. (2020). Combining IFC and 3D tiles to create 3D visualization for building information modeling. AUTOMATION IN CONSTRUCTION, 109.

[33]Xu, J., Lu, W., Xue, F., & Chen, K. (2019). `Cognitive facility management’: Definition, system architecture, and example scenario. AUTOMATION IN CONSTRUCTION, 107.

[34]Jia, M., Komeily, A., Wang, Y., & Srinivasan, R. S. (2019). Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. AUTOMATION IN CONSTRUCTION, 101, 111–126.

[35]Xu, G., Li, M., Chen, C.-H., & Wei, Y. (2018). Cloud asset-enabled integrated IoT platform for lean prefabricated construction. AUTOMATION IN CONSTRUCTION, 93, 123–134.

[36]Howell, S., Rezgui, Y., & Beach, T. (2017). Integrating building and urban semantics to empower smart water solutions. AUTOMATION IN CONSTRUCTION, 81, 434–448.

[37]Tang, S., Shelden, D. R., Eastman, C. M., Pishdad-Bozorgi, P., & Gao, X. (2019). A review of building information modeling (BIM) and the internet of things (IoT) devices integration: Present status and future trends. AUTOMATION IN CONSTRUCTION, 101, 127–139.

[38]Woodhead, R., Stephenson, P., & Morrey, D. (2018). Digital construction: From point solutions to IoT ecosystem. AUTOMATION IN CONSTRUCTION, 93, 35–46.

[39]Alves, M., Carreira, P., & Costa, A. A. (2017). BIMSL: A generic approach to the integration of building information models with real-time sensor data. AUTOMATION IN CONSTRUCTION, 84, 304–314.

[40]Ding, L. Y., Zhou, C., Deng, Q. X., Luo, H. B., Ye X. W. and Ni, Y. Q., & Guo, P. (2013). Real-time safety early warning system for cross passage construction in Yangtze Riverbed Metro Tunnel based on the internet of things. AUTOMATION IN CONSTRUCTION, 36, 25–37.

[41]Zhong, R. Y., Peng, Y., Xue, F., Fang, J., Zou, W., Luo, H., Ng, S. T., Lu, W., Shen, G. Q. P., & Huang, G. Q. (2017). Prefabricated construction enabled by the Internet-of-Things. AUTOMATION IN CONSTRUCTION, 76, 59–70.

[42]Lilis, G., & Kayal, M. (2018). A secure and distributed message oriented middleware for smart building applications. AUTOMATION IN CONSTRUCTION, 86, 163–175.

[43]Xie, X., Wang, Q., Shahrour, I., Li, J., & Zhou, B. (2018). A real-time interaction platform for settlement control during shield tunnelling construction. AUTOMATION IN CONSTRUCTION, 94, 154–167

[44]Dave, B., Buda, A., Nurminen, A., & Framling, K. (2018). A framework for integrating BIM and IoT through open standards. AUTOMATION IN CONSTRUCTION, 95, 35–45.

[45]Bruno, S., de Fino, M., & Fatiguso, F. (2018). Historic Building Information Modelling: performance assessment for diagnosis-aided information modelling and management. AUTOMATION IN CONSTRUCTION, 86, 256–276.

[46]Bridges, A. H. (1997). Implications of the internet for the construction industry. Automation in Construction, 6(1), 45–49.

[47]Love, P. E. D., & Matthews, J. (2019). The `how’ of benefits management for digital technology: From engineering to asset management. AUTOMATION IN CONSTRUCTION, 107.

[48]Ma, Z., Ren, Y., Xiang, X., & Turk, Z. (2020). Data-driven decision-making for equipment maintenance. AUTOMATION IN CONSTRUCTION, 112.

[49]刘晶璟. 采用加速度传感器导航实现盲区定位的研究[硕士学位论文]. 上海: 上海 交通大学, 2011.

[50]薛浩渊. 基于射频定位的矿山人员可视化避灾撤离技术研究及应用[硕士学位论 文]. 济南:山东大学, 2013.

[51]孙有恒. 基于 BIM+RFID 的人员定位技术在城市轨道交通工程轨行区安全管 理 中的应用研究[硕士学位论文]. 广州:华南理工大学, 2017.

[52]张曦文. 基于 TDOA 和 AOA 的无线定位算法研究[硕士学位论文]. 成都:电子科 技大学, 2019.

[53]刘秀兵. 面向室内定位精度鲁棒性的网元布局优化方法[硕士学位论文]. 哈尔 滨: 哈尔滨工程大学, 2019.

[54]袁松. 面向化工生产区的人员定位方法及其应用方案的设计与实现[硕士学位论 文]. 杭州:浙江大学, 2018.


l 制造-建造生产模式

[1]. Aheleroff, S., Xu, X., Lu, Y., Aristizabal, M., Velásquez, J. P., Joa, B., & Valencia, Y. (2020). IoT-enabled smart appliances under industry 4.0: A case study. Advanced Engineering Informatics, 43, 101043.

[2]. Bataglin, F. S., Viana, D. D., Formoso, C. T., & Bulhões, I. R. (2020). Model for planning and controlling the delivery and assembly of engineer-to-order prefabricated building systems: exploring synergies between Lean and BIM. Canadian Journal of Civil Engineering, 47(2), 165-177.

[3]. Cui, Y., Li, S., Liu, C., & Sun, N. (2020). Creation and diversified applications of plane module libraries for prefabricated houses based on BIM. Sustainability, 12(2), 453.

[4]. Marcinkowski, R., & Banach, M. (2020). Computer Aided Assembly of Buildings. Buildings, 10(2), 28.

[5]. Wang, Z., Wang, T., Hu, H., Gong, J., Ren, X., & Xiao, Q. (2020). Blockchainbased framework for improving supply chain traceability and information sharing in precast construction. Automation in Construction, 111, 103063.

[6]. Xu, Z., Abualdenien, J., Liu, H., & Kang, R. (2020). An IDM-Based Approach for Information Requirement in Prefabricated Construction. Advances in Civil Engineering, 2020, 8946530.

[7]. Bortolini, R., Formoso, C. T., & Viana, D. D. (2019). Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling. Automation in Construction, 98, 248-264.

[8]. Li, X., Shen, G. Q., Wu, P., & Yue, T. (2019). Integrating building information modeling and prefabrication housing production. Automation in Construction, 100, 46-60.

[9]. Li, X., Shen, G. Q., Wu, P., Xue, F., Chi, H. L., & Li, C. Z. (2019). Developing a conceptual framework of smart work packaging for constraints management in prefabrication housing production. Advanced Engineering Informatics, 42, 100938.

[10]. Liu, H., Sydora, C., Altaf, M. S., Han, S., & Al-Hussein, M. (2019). Towards sustainable construction: BIM-enabled design and planning of roof sheathing installation for prefabricated buildings. Journal of Cleaner Production, 235, 1189-1201.

[11]. Ma, G., Jiang, J., & Shang, S. (2019). Visualization of Component Status Information of Prefabricated Concrete Building Based on Building Information Modeling and Radio Frequency Identification: A Case Study in China. Advances in Civil Engineering, 2019.

[12]. Xu, G., Li, M., Luo, L., Chen, C. H., & Huang, G. Q. (2019). Cloud-based fleet management for prefabrication transportation. Enterprise Information Systems, 13(1), 87- 106.

[13]. Yoo, M., Kim, J., & Choi, C. (2019). Effects of BIM-based construction of prefabricated steel framework from the perspective of SMEs. Applied Sciences, 9(9), 1732.

[14]. Zhao, L., Liu, Z., & Mbachu, J. (2019). Development of intelligent prefabs using IoT technology to improve the performance of prefabricated construction projects. Sensors, 19(19), 4131.

[15]. Altaf, M. S., Bouferguene, A., Liu, H., Al-Hussein, M., & Yu, H. (2018). Integrated production planning and control system for a panelized home prefabrication facility using simulation and RFID. Automation in Construction, 85, 369-383.

[16]. Chen, K., Xu, G., Xue, F., Zhong, R. Y., Liu, D., & Lu, W. (2018). A physical internet-enabled building information modelling system for prefabricated construction. International Journal of Computer Integrated Manufacturing, 31(4-5), 349-361.

[17]. Jang, S., & Lee, G. (2018). Process, productivity, and economic analyses of BIM– based multi-trade prefabrication—A case study. Automation in Construction, 89, 86-98.

[18]. Li, C. Z., Xue, F., Li, X., Hong, J., & Shen, G. Q. (2018). An Internet of Thingsenabled BIM platform for on-site assembly services in prefabricated construction. Automation in Construction, 89, 146-161.

[19]. Xu, G., Li, M., Chen, C. H., & Wei, Y. (2018). Cloud asset-enabled integrated IoT platform for lean prefabricated construction. Automation in Construction, 93, 123-134.

20. Yuan, Z., Sun, C., & Wang, Y. (2018). Design for Manufacture and Assemblyoriented parametric design of prefabricated buildings. Automation in Construction, 88, 13- 22.

[21]. Abanda, F. H., Tah, J. H. M., & Cheung, F. K. T. (2017). BIM in off-site manufacturing for buildings. Journal of Building Engineering, 14, 89-102.

[22]. Isaac, S., Curreli, M., & Stoliar, Y. (2017). Work packaging with BIM. Automation in Construction, 83, 121-133.

[23]. Li, C. Z., Zhong, R. Y., Xue, F., Xu, G., Chen, K., Huang, G. G., & Shen, G. Q. (2017). Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. Journal of Cleaner Production, 165, 1048-1062.

[24]. Nascimento, D. L. D. M., Sotelino, E. D., Lara, T. P. S., Caiado, R. G. G., & Ivson, P. (2017). Constructability in industrial plants construction: a BIM-Lean approach using the Digital Obeya Room framework. Journal of Civil Engineering and Management, 23(8), 1100-1108.

[25]. Niu, Y., Lu, W., Liu, D., Chen, K., Anumba, C., & Huang, G. G. (2017). An SCOenabled logistics and supply chain–management system in construction. Journal of Construction Engineering and Management, 143(3), 04016103.

[26]. Alvarez-Anton, L., Koob, M., Diaz, J., & Minnert, J. (2016). Optimization of a hybrid tower for onshore wind turbines by Building Information Modeling and prefabrication techniques. Visualization in Engineering, 4(1), 3.

[27]. Isaac, S., Bock, T., & Stoliar, Y. (2016). A methodology for the optimal modularization of building design. Automation in Construction, 65, 116-124.

[28]. Kim, M. K., Wang, Q., Park, J. W., Cheng, J. C., Sohn, H., & Chang, C. C. (2016). Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM. Automation in Construction, 72, 102-114.

[29]. Li, C. Z., Hong, J., Xue, F., Shen, G. Q., Xu, X., & Luo, L. (2016). SWOT analysis and Internet of Things-enabled platform for prefabrication housing production in Hong Kong. Habitat International, 57, 74-87.

[30]. Feng, C. G., Hu, H., Xu, F., & Yang, J. (2015). An intelligent logistics management model in prefabricated construction. frontiers of engineering management, 2(2), 178-181.

[3]1. Nath, T., Attarzadeh, M., Tiong, R. L., Chidambaram, C., & Yu, Z. (2015). Productivity improvement of precast shop drawings generation through BIM-based process re-engineering. Automation in Construction, 54, 54-68.

[32]. Čuš-Babič, N., Rebolj, D., Nekrep-Perc, M., & Podbreznik, P. (2014). Supplychain transparency within industrialized construction projects. Computers in Industry, 65(2), 345-353.

[33]. Luth, G. P., Schorer, A., & Turkan, Y. (2014). Lessons from using BIM to increase design-construction integration. Practice Periodical on Structural Design and Construction, 19(1), 103-110.

[34]. BIM 技术在装配式建筑设计及施工管理中的应用探索. 渠立朋, 中国矿业大学

[35]. 工业化住宅部品通用化技术理论及模数协调应用研究. 李敏, 北京交通大学

[36]. 基于精益理论的装配式建筑成本管理研究. 周烨雯, 华中科技大学

[37]. 基于 BIM 的装配式建筑设计施工协同机制研究. 周锦彬, 广东工业大学

[38]. 基于 BIM 的装配式建筑设计方法与决策支持系统. 胡丰珺, 西南交通大学


l 建造平台化

[1] L. Hang, E. Choi, D.H. Kim, A novel EMR integrity management based on a medical blockchain platform in hospital, Electron. 8 (2019). https://doi.org/10.3390/electronics8040467.

[2] J.C.P. Cheng, K.H. Law, H. Bjornsson, A. Jones, R. Sriram, A service oriented framework for construction supply chain integration, Autom. Constr. 19 (2010) 245–260. https://doi.org/10.1016/j.autcon.2009.10.003.

[3] T.H. Shin, S. Chin, S.W. Yoon, S.W. Kwon, A service-oriented integrated information framework for RFID/WSN-based intelligent construction supply chain management, Autom. Constr. 20 (2011) 706–715. https://doi.org/10.1016/j.autcon.2010.12.002.

[4] P. Zheng, Y. Lu, X. Xu, S.Q. Xie, A system framework for OKP product planning in a cloud-based design environment, Robot. Comput. Integr. Manuf. 45 (2017) 73–85. https://doi.org/10.1016/j.rcim.2016.04.001.

[5] M. Das, J.C.P. Cheng, K.H. Law, An ontology-based web service framework for construction supply chain collaboration and management, Eng. Constr. Archit. Manag. 22 (2015) 551–572. https://doi.org/10.1108/ECAM-07-2014-0089.

[6] Y.Y. Cheng, H.J. Shaw, Cloud-based, service-oriented and knowledge-sharing architecture: Its design and application in shipbuilding, Int. J. Comput. Integr. Manuf. 28 (2015) 137–154. https://doi.org/10.1080/0951192X.2013.874587.

[7] D. Wu, D.W. Rosen, L. Wang, D. Schaefer, Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation, CAD Comput. Aided Des. 59 (2015) 1–14. https://doi.org/10.1016/j.cad.2014.07.006.

[8] X.F. Liu, M.R. Shahriar, S.M.N. Al Sunny, M.C. Leu, L. Hu, Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed, J. Manuf. Syst. 43 (2017) 352–364. https://doi.org/10.1016/j.jmsy.2017.04.004.

[9] S. Howell, Y. Rezgui, T. Beach, Integrating building and urban semantics to empower smart water solutions, Autom. Constr. 81 (2017) 434–448. https://doi.org/10.1016/j.autcon.2017.02.004.

[10] F. Tao, Y. Zuo, L. Da Xu, L. Zhang, IoT-Based intelligent perception and access of manufacturing resource toward cloud manufacturing, IEEE Trans. Ind. Informatics. 10 (2014) 1547–1557. https://doi.org/10.1109/TII.2014.2306397.

[11] N. Liu, X. Li, W. Shen, Multi-granularity resource virtualization and sharing strategies in cloud manufacturing, J. Netw. Comput. Appl. 46 (2014) 72–82. https://doi.org/10.1016/j.jnca.2014.08.007.

[12] Y. Cao, S. Wang, L. Kang, C. Li, L. Guo, Study on machining service modes and resource selection strategies in cloud manufacturing, Int. J. Adv. Manuf. Technol. 81 (2015) 597–613. https://doi.org/10.1007/s00170-015-7222-z.

[13] Y. Zhang, D. Xi, R. Li, S. Sun, Task-driven manufacturing cloud service proactive discovery and optimal configuration method, Int. J. Adv. Manuf. Technol. (2016) 29–45. https://doi.org/10.1007/s00170-015-7731-9. [14] Y. Qian, Y. Jiang, J. Chen, Y. Zhang, J. Song, M. Zhou, M. Pustišek, Towards decentralized IoT security enhancement : A blockchain approach R, Comput. Electr. Eng. 72 (2018) 266–273. https://doi.org/10.1016/j.compeleceng.2018.08.021.

[15] 张艳秋. 智慧建造框架体系与标准化建造服务建模[D]. 2016.

[16] 李孝斌. 云制造环境下机床装备资源优化配置方法及技术研究[D]. 2015.

[17] 杨洁. SOA 架构下基于语义的人件服务管理与调用研究[D]. 2014.

[18] 刘典. “互联网+”环境下的工程建造服务组合研究[D]. 2019.

[19] 刘宁. 云制造资源虚拟化关键技术及应用[D]. 2015.


l 重大基础设施运维管理

[1] Bertino, E., & Jahanshahi, M. R. (2018). Adaptive and Cost-Effective Collection of High-Quality Data for Critical Infrastructure and Emergency Management in Smart Cities—Framework and Challenges. Journal of Data and Information Quality, 10(1), 1-6. doi:10.1145/3190579

[2] Bialas, A. (2016). Risk Management in Critical Infrastructure—Foundation for Its Sustainable Work. Sustainability, 8(3). doi:10.3390/su8030240

[3] Brashear, J. P. (2020). Managing Risk to Critical Infrastructures, Their Interdependencies, and the Region They Serve: A Risk Management Process. In Optimizing Community Infrastructure (pp. 41-67).

[4] Crowther, K. G. (2008). Decentralized risk management for strategic preparedness of critical infrastructure through decomposition of the inoperability input–output model. International Journal of Critical Infrastructure Protection, 1, 53-67. doi:10.1016/j.ijcip.2008.08.009

[5] Guo, F., Chang-Richards, Y., Wilkinson, S., & Li, T. C. (2014). Effects of project governance structures on the management of risks in major infrastructure projects: A comparative analysis. International Journal of Project Management, 32(5), 815-826. doi:10.1016/j.ijproman.2013.10.001

[6] Hashimoto, Y., Toyoshima, T., Yogo, S., Koike, M., Jing, S., & Koshijima, I. (2012). Conceptual Framework for Security Hazard Management in Critical Infrastructures. In 11th International Symposium on Process Systems Engineering (pp. 1266-1270).

[7] Hossain, N. U. I., Jaradat, R., Hosseini, S., Marufuzzaman, M., & Buchanan, R. K. (2019). A framework for modeling and assessing system resilience using a Bayesian network: A case study of an interdependent electrical infrastructure system. International Journal of Critical Infrastructure Protection, 25, 62-83. doi:10.1016/j.ijcip.2019.02.002

[8] Huang, H.-w., & Zhang, D.-m. (2016). Resilience analysis of shield tunnel lining under extreme surcharge: Characterization and field application. Tunnelling and Underground Space Technology, 51, 301-312. doi:10.1016/j.tust.2015.10.044

[9] Kiel, J., Petiet, P., Nieuwenhuis, A., Peters, T., & van Ruiten, K. (2016). A Decision Support System for the Resilience of Critical Transport Infrastructure to Extreme Weather Events. Transportation Research Procedia, 14, 68-77. doi:10.1016/j.trpro.2016.05.042

[10] Krausmann, E., Girgin, S., & Necci, A. (2019). Natural hazard impacts on industry and critical infrastructure: Natech risk drivers and risk management performance indicators. International Journal of Disaster Risk Reduction, 40. doi:10.1016/j.ijdrr.2019.101163

[11] Krupa, T., & Wiśniewski, M. (2015). Situational Management Of Critical Infrastructure Resources Under Threat. Foundations of Management, 7(1), 93-104. doi:10.1515/fman-2015-0028

[12] Labaka, L., Hernantes, J., & Sarriegi, J. M. (2015). Resilience framework for critical infrastructures: An empirical study in a nuclear plant. Reliability Engineering & System Safety, 141, 92-105. doi:10.1016/j.ress.2015.03.009

[13] Lee, S.-W. (2013). Evidence-driven decision support in critical infrastructure management through enhanced domain knowledge modeling. Multimedia Tools and Applications, 71(1), 309-330. doi:10.1007/s11042-013-1469-x

[14] Liu, W., & Song, Z. (2020). Review of studies on the resilience of urban critical infrastructure networks. Reliability Engineering & System Safety, 193. doi:10.1016/j.ress.2019.106617

[15] Misuri, A., Khakzad, N., Reniers, G., & Cozzani, V. (2019). A Bayesian network methodology for optimal security management of critical infrastructures. Reliability Engineering & System Safety, 191. doi:10.1016/j.ress.2018.03.028

[16] Nicolae, B., Antoniu, G., Bougé, L., Moise, D., & Carpen-Amarie, A. (2011). BlobSeer: Next-generation data management for large scale infrastructures. Journal of Parallel and Distributed Computing, 71(2), 169-184. doi:10.1016/j.jpdc.2010.08.004

[17] Ouyang, M., Liu, C., & Xu, M. (2019). Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions. Reliability Engineering & System Safety, 190. doi:10.1016/j.ress.2019.106506

[18] Ouyang, M., & Wang, Z. (2015). Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis. Reliability Engineering & System Safety, 141, 74-82. doi:10.1016/j.ress.2015.03.011

[19] Rehak, D., Senovsky, P., Hromada, M., & Lovecek, T. (2019). Complex approach to assessing resilience of critical infrastructure elements. International Journal of Critical Infrastructure Protection, 25, 125-138. doi:10.1016/j.ijcip.2019.03.003

[20] Roe, E., & Schulman, P. R. (2015). Comparing Emergency Response Infrastructure to Other Critical Infrastructures in the California Bay-Delta of the United States: A Research Note on Inter-Infrastructural Differences in Reliability Management. Journal of Contingencies and Crisis Management, 23(4), 193-200. doi:10.1111/1468-5973.12083

[21] Roe, E., & Schulman, P. R. (2018). A reliability & risk framework for the assessment and management of system risks in critical infrastructures with central control rooms. Safety Science, 110, 80-88. doi:10.1016/j.ssci.2017.09.003

[22] Sapori, E., Sciutto, M., & Sciutto, G. (2014). A Quantitative Approach to Risk Management in Critical Infrastructures. Transportation Research Procedia, 3, 740-749. doi:10.1016/j.trpro.2014.10.053

[23] Shi, Z., Watanabe, S., Ogawa, K., & Kubo, H. (2018). Japan’s efforts to enhance social infrastructure resilience. In Structural Resilience in Sewer Reconstruction (pp. 113- 141).

[24] Tamvakis, P., & Xenidis, Y. (2013). Comparative Evaluation of Resilience Quantification Methods for Infrastructure Systems. Procedia - Social and Behavioral Sciences, 74, 339-348. doi:10.1016/j.sbspro.2013.03.030

[25] Wang, H. (2013). A Rule-Based Decision Support System for Critical Infrastructure Management. Human and Ecological Risk Assessment: An International Journal, 19(2), 566-576. doi:10.1080/10807039.2013.755102

[26] Zhang, D.-m., Du, F., Huang, H., Zhang, F., Ayyub, B. M., & Beer, M. (2018). Resiliency assessment of urban rail transit networks: Shanghai metro as an example. Safety Science, 106, 230-243. doi:10.1016/j.ssci.2018.03.023

[27] 王亚伟. 城市重大基础设施抗震防灾能力评价方法研究[D]. 2017.

[28] 邹野. 全域大连的重大基础设施需求预测及协调管理[D]. 2009.

[29] 叶琳. 基于韧性视角的海绵城市建设问题研究——以 S 市 P 区为例[D]. 2018. [30] 梁馥梓艺. 韧性视角下的资源枯竭型城市基础设施更新策略研究——以湖北 黄石市为例[D]. 2017

[31] 陈思宇. 重大基础设施 PPP 项目的监管体系研究[D]. 2018


课程课件:

土木工程研究前沿

文献阅读与整理

论文选题与研究方法

毕业论文撰写

科研论文

产业服务项目1:项目方案的基本知识

产业服务项目2:石化工程智能工地

基金申请书



上一篇:数字建造导论
下一篇:BIM应用·施工