前沿报告
专业课程

数字建造导论

来源:   作者:  发布时间:2021年09月17日  点击量:


数字建造教学安排

授课教师:骆汉宾、周诚、钟波涛、叶艳兵、王帆、陈珂、陈维亚

主要教材:《数字建造导论》丁烈云著(中国建筑工业出版社)

课程助教:胡睿博

课程目标:系统地阐述数字建造框架体系以及建筑产业变革的趋势,并从建筑数字化设计、工程结构参数化设计、工程数字化施工、建筑机器人、建筑结构安全监测与智能评估、建筑工程数字化运维服务等多个方面对数字建造在工程设计、施工、运维全过程中的相关技术与管理问题进行全面地讲授。

课程内容:课堂教学8次,课程安排如下:


注:每次课后更新教学PPT,请见附件。


考核方式:

1)课堂成绩(占总分40%

汇报主题:与教学内容相关的PPT分享,包括但不限于:背景及国内外现状、关键技术及原理、实施效果分析、创新点及对自己研究的启示等几个方面内容;

汇报形式:每位学生制作PPT并在课堂分享,时间控制在5分钟左右;

汇报目的:培养学生的自主科研能力与思维表达能力;

提交时间:ppt请于每次课前一天提交至邮箱(flabour@hust.edu.cn)。

2)结课报告成绩(占总分60%

提交材料:每位学生需独立完成并提交 4000 字左右的课程报告,报告内容包括引言、研究现状、趋势分析、总结、参考文献;

提交方式:本学期结课之前提交电子版文档至邮箱(flabour@hust.edu.cn),提交纸质版文档(B5大小)至西六楼410办公室;

格式要求见附件“数字建造”课程报告》


 课程制度

若学生因病或其他个人原因无法上课,请通过邮件告知任课老师,否则扣除10分;

上课专心听讲,不得从事其它无关事项;

所有同学务必在规定时间内完成随堂汇报,否则扣除随堂汇报分数;

课程报告应在规定时间内提交。若无特殊原因,延迟一周以内提交扣除20%的分数,超过一周则按未提交处理;严格注明参考文献引用出处,若发现课程报告中有严重抄袭行为,按照学校相关规定严肃处理。


 文献查询网站:提供了文献查阅网址链接,供学生查询学术论文。

*中文

知网:https://www.cnki.net/

万方:https://g.wanfangdata.com.cn/index.html

维普:http://lib.cqvip.com/

CSSCI:http://cssci.nju.edu.cn/

华中科技大学BIM工程中心:http://bim.hust.edu.cn/index.htm

*英文

ScienceDirect: https://www.sciencedirect.com/

EI: https://www.engineeringvillage.com/search/quick.url

Wiley: https://onlinelibrary.wiley.com/

Springer: https://link.springer.com/

Google scholar: https://ac.scmor.com/


延伸阅读材料

l 数字建造框架体系

[1] Xu M Z, Nie X Y, Li H, et al. Smart construction sites: A promising approach to improving on-site HSE management performance[J]. Journal of Building Engineering, 2022, 49.

[2] Rossi A, Vila Y, Lusiani F, et al. Embedded smart sensor device in construction site machinery [J]. Computers in Industry, 2019, 108:12–20.

[3] Bucchiarone A, De Sanctis M, Hevesi P, et al. Smart construction: Remote and adaptable management of construction sites through IoT [J]. IEEE Internet of Things Magazine, 2019, 2(3): 38–45.

[4] Kochovski P, Stankovski V. Supporting smart construction with dependable edge computing infrastructures and applications [J]. Automation in Construction, 2018, 85:182–192.

[5] Edirisinghe R. Digital skin of the construction site: Smart sensor technologies towards the future smart construction site [J]. Engineering, Construction and Architectural Management, 2019, 26(2): 184–223.

[6] Ding L, Fang W, Luo H, et al. A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory [J]. Automation in Construction, 2018, 86: 118–124.

[7] Zhou H, Wang H, Zeng W. Smart construction site in mega construction projects: A case study on island tunneling project of Hong Kong-Zhuhai-Macao Bridge [J]. Frontiers of Engineering Management, 2018, 5(1): 78–87.

[8] 丁烈云. 智能建造创新型工程科技人才培养的思考 [J]. 高等工程教育研究, 2019 (5): 1–4, 29.

[9] 毛超, 彭窑胭. 智能建造的理论框架与核心逻辑构建 [J]. 工程管理学报, 2020, 34(5):1–6.

[10] 陈珂, 陈强健, 杜鹏. 国产BIM建模软件发展的思考:基于PCA的影响因素研究[J/OL]. 土木建筑工程信息技术, 2021: 1–9 [2021-03-22].

[11] 张曙. 工业4.0和智能制造 [J]. 机械设计与制造工程, 2014, 43(8): 1–5.

[12] 王旭东,陆惠民.智慧工地政策分析及推广研究[J].工程管理学报,2021,35(06):7-12.

[13] 陈丽娟. 基于BIM的工程施工质量管理研究[D]. 湖北:华中科技大学,2015.


l 数字建造推动产业变革

[1] Wu C K, Li X, Guo Y J, et al. Natural language processing for smart construction: Current status and future directions[J]. Automation in Construction,2022,134.

[2] Pal A, Hsieh S H. Deep-learning-based visual data analytics for smart construction management[J]. Automation in Construction,2021,131.

[3] Cho Y K, Ahn C R. Future of Smart Construction and Infrastructure[J]. Journal of Computing in Civil Engineering,2022,36(1).

[4] Bilal M, Oyedele L O, Qadir J, et al. Big data in the construction industry: A review of present status, opportunities, and future.

[5] Liu H L, Song J L, Wang G B. A Scientometric Review of Smart Construction Site in Construction Engineering and Management: Analysis and Visualization[J]. Sustainability,2021,13(16).

[6] Kanan R, Elhassan Bensalem R. An IoT-based autonomous system for workers’ safety in construction sits with real-time alarming, monitoring, and positioning strategies [J]. Automation in Construction, 2018 (88): 73–86.

[7] Zhou C, Ding L Y. Safety barrier warning system for underground construction sites using Internet-of-Things technologies [J]. Automation in Construction, 2017, 83: 372–389.

[8] Eastman C, Teicholz P, Sacks R, et al. BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors [M]. New York: John Wiley & Sons, 2011.

[9] 廖玉平. 加快建筑业转型 推动高质量发展——解读《关于推动智能建造与建筑工业化协同发展的指导意见》[J]. 中国勘察设计, 2020 (9): 20–21.

[10] 丁烈云. 智能建造推动建筑产业变革 [N]. 中国建设报, 2019-06-07(08).

[11] 周济. 智能制造是“中国制造2025”主攻方向 [J]. 企业观察家, 2019 (11):54–55.

[12] 莫志刚. 基于RAMS的地铁信号系统运营维护管理研究[D]. 湖北:华中科技大学,2018.


l 基于模型定义的工程产品

[1] P. Patlakas, A. Livingstone, R. Hairstans, and G. Neighbour, “Automatic code compliance with multi-dimensional data fitting in a BIM context,” Adv. Eng. Informatics, vol. 38, no. June, pp. 216–231, 2018.

[2] S. Jang and G. Lee, “Impact of organizational factors on delays in bim-based coordination from a decision-making view: A case study,” J. Civ. Eng. Manag., vol. 24, no. 1, pp. 19–30, 2018.

[3] S. Jiang, N. Wang, and J. Wu, “Combining BIM and Ontology to Facilitate Intelligent Green Building Evaluation,” J. Comput. Civ. Eng., vol. 32, no. 5, pp. 1–15, 2018.

[4] R. de Klerk, A. M. Duarte, D. P. Medeiros, J. P. Duarte, J. Jorge, and D. S. Lopes, “Usability studies on building early stage architectural models in virtual reality,” Autom. Constr., vol. 103, no. July 2016, pp. 104–116, 2019.

[5] S. Mehrbod, S. Staub-French, N. Mahyar, and M. Tory, “Characterizing interactions with BIM tools and artifacts in building design coordination meetings,” Autom. Constr., vol. 98, no. October 2018, pp. 195–213, 2019.

[6] J. Wolfartsberger, “Analyzing the potential of Virtual Reality for engineering design review,” Autom. Constr., vol. 104, no. November 2018, pp. 27–37, 2019.

[7] P. Ghannad, Y. C. Lee, J. Dimyadi, and W. Solihin, “Automated BIM data validation integrating open-standard schema with visual programming language,” Adv. Eng. Informatics, vol. 40, no. January, pp. 14–28, 2019.

[8] N. Gui, C. Wang, Z. Qiu, W. Gui, and G. Deconinck, “IFC-Based Partial Data Model Retrieval for Distributed Collaborative Design,” J. Comput. Civ. Eng., vol. 33, no. 3, pp. 1–10, 2019.

[9] Y. Hu and D. Castro-Lacouture, “Clash Relevance Prediction Based on Machine Learning,” J. Comput. Civ. Eng., vol. 33, no. 2, 2019.

[10] H. Lai, X. Deng, and T. Y. P. Chang, “BIM-Based Platform for Collaborative Building Design and Project Management,” J. Comput. Civ. Eng., vol. 33, no. 3, pp. 1–15, 2019.

[11] W. Wu, J. Hartless, A. Tesei, V. Gunji, S. Ayer, and J. London, “Design Assessment in Virtual and Mixed Reality Environments: Comparison of Novices and Experts,” J. Constr. Eng. Manag., vol. 145, no. 9, 2019.

[12] C. Engineering, “Computing in Civil Engineering 2019 439,” no. Mvd, pp. 439– 446, 2019.

[13] E. Rigger, T. Vosgien, K. Shea, and T. Stankovic, “A top-down method for the derivation of metrics for the assessment of design automation potential,” J. Eng. Des., vol. 31, no. 2, pp. 69–99, 2020.

[14] C. Unified and D. Plan, “Visualize Smart Growth development with Parametric BIM A case study of Columbia Unified Development Plan.”

[15] H. Lu, D. Park, C. Liu, G. Ji, and Z. Tong, Computer-Aided Architectural Design “Hello, Culture”: 18th International Conference, CAAD Futures 2019, Selected Papers, vol. 1028. Springer Singapore, 2019.

[16] H. Ying and S. Lee, “Automatic Detection of Geometric Errors in Space Boundaries of IFC-BIM Models Using Monte Carlo Ray Tracing Approach,” J. Comput. Civ. Eng., vol. 34, no. 2, pp. 1–20, 2020.

[17] K. Shea, R. Aish, and M. Gourtovaia, “Towards integrated performance-driven generative design tools,” Autom. Constr., vol. 14, no. 2 SPEC. ISS., pp. 253–264, 2005.

[18] Y. Madkour, O. Neumann, and H. Erhan, “Programmatic Formation: Practical Applications of Parametric Design,” Int. J. Archit. Comput., vol. 7, no. 4, pp. 587–603, 2009.

[19] 李晶. 基于 MBD 的智能化工艺设计技术研究[D].南京航空航天大学,2018.

[20] 尹旭东. 基于模型定义的知识重用及其在水工配筋上的应用实现[D].电子科 技大学, 2014.

[21] 谢坤峰. 基于模型定义的 CAD 信息提取和重用方法的研究[D].合肥工业大学, 2017.

[22] 辛宏妍. 面向数字建造的工程设计组织模式研究[D].华中科技大学, 2017.

[23] 刘立肖. 迁移建筑物的参数化建模和有限元分析[D].天津大学, 2009.

[24] 孔刘林. 基于生产-运输-装配一体化建造方式的建模研究[D].华中科技大学, 2019.


l 工程物联网

[1] Edmondson, V., Cerny, M., Lim, M., Gledson Barry and Lockley, S., & Woodward, J. (2018). A smart sewer asset information model to enable an `Internet of Things’ for operational wastewater management. AUTOMATION IN CONSTRUCTION, 91, 193–205.

[2] Li, X., Shen, G. Q., Wu, P., & Yue, T. (2019). Integrating Building Information Modeling and Prefabrication Housing Production. AUTOMATION IN CONSTRUCTION, 100, 46–60.

[3] Zhou, C., & Ding, L. Y. (2017). Safety barrier warning system for underground construction sites using Internet-of-Things technologies. AUTOMATION IN CONSTRUCTION, 83, 372–389.

[4] Lin, Y.-S., Chan, R. W. K., & Tagawa, H. (2020). Earthquake early warning-enabled smart base isolation system. AUTOMATION IN CONSTRUCTION, 115.

[5] Asadzadeh, A., Arashpour, M., Li, H., Ngo, T., Bab-Hadiashar, A., & Rashidi, A. (2020). Sensor-based safety management. AUTOMATION IN CONSTRUCTION, 113.

[6] Ibem, E. O., & Laryea, S. (2014). Survey of digital technologies in procurement of construction projects. AUTOMATION IN CONSTRUCTION, 46, 11–21.

[7] Dave, B., Kubler, S., Framling, K., & Koskela, L. (2016). Opportunities for enhanced lean construction management using Internet of Things standards. AUTOMATION IN CONSTRUCTION, 61, 86–97.

[8] Ozturk, G. B. (2020). Interoperability in building information modeling for AECO/FM industry. AUTOMATION IN CONSTRUCTION, 113.

[9] Martin-Garin, A., Millan-Garcia, J. A., Bairi, A., Milian-Medel, J., & Sala-Lizarraga, J. M. (2018). Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit. AUTOMATION IN CONSTRUCTION, 87, 201–214.

[10] Slaton, T., Hernandez, C., & Akhavian, R. (2020). Construction activity recognition with convolutional recurrent networks. AUTOMATION IN CONSTRUCTION, 113.

[11] Zhou, C., Luo, H., Fang, W., Wei, R., & Ding, L. (2019). Cyber-physical-system-based safety monitoring for blind hoisting with the internet of things: A case study. AUTOMATION IN CONSTRUCTION, 97, 138–150.

[12] Kanan, R., Elhassan, O., & Bensalem, R. (2018). An IoT-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. AUTOMATION IN CONSTRUCTION, 88, 73–86.

[13] Rashid, K. M., Louis, J., & Fiawoyife, K. K. (2019). Wireless electric appliance control for smart buildings using indoor location tracking and BIM-based virtual environments. AUTOMATION IN CONSTRUCTION, 101, 48–58.

[14] Tao, X., Mao, C., Xie, F., Liu, G., & Xu, P. (2018). Greenhouse gas emission monitoring system for manufacturing prefabricated components. AUTOMATION IN CONSTRUCTION, 93, 361–374.

[15] Li, J., Greenwood, D., & Kassem, M. (2019). Blockchain in the built environment and construction industry: A systematic review, conceptual models and practical use cases. AUTOMATION IN CONSTRUCTION, 102, 288–307.

[16] Naser, M. Z., & Kodur, V. K. R. (2018). Cognitive infrastructure - a modern concept for resilient performance under extreme events. AUTOMATION IN CONSTRUCTION, 90, 253–264.

[17] Li, C. Z., Xue, F., Li, X., Hong, J., & Shen, G. Q. (2018). An Internet of Things-enabled BIM platform for on-site assembly services in prefabricated construction. AUTOMATION IN CONSTRUCTION, 89, 146–161.

[18] Boje, C., Guerriero, A., Kubicki, S., & Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. AUTOMATION IN CONSTRUCTION, 114.

[19] Samuelson, O., & Bjork, B.-C. (2014). A longitudinal study of the adoption of IT technology in the Swedish building sector. AUTOMATION IN CONSTRUCTION, 37, 182–190.

[20] Wong, J. K. W., Ge, J., & He, S. X. (2018). Digitisation in facilities management: A literature review and future research directions. AUTOMATION IN CONSTRUCTION, 92, 312–326.

[21] Cheng, J. C. P., Chen, W., Chen, K., & Wang, Q. (2020). Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. AUTOMATION IN CONSTRUCTION, 112.

[22] Louis, J., & Dunston, P. S. (2018). Integrating IoT into operational workflows for real-time and automated decision-making in repetitive construction operations. AUTOMATION IN CONSTRUCTION, 94, 317–327.

[23] 孙有恒. 基于 BIM+RFID 的人员定位技术在城市轨道交通工程轨行区安全管理中的应用研究[D].华南理工大学, 2017.

[24] 张曦文. 基于 TDOA 和 AOA 的无线定位算法研究[D].电子科技大学, 2019.

[25] 刘秀兵. 面向室内定位精度鲁棒性的网元布局优化方法[D].哈尔滨工程大学, 2019.

[26] 袁松. 面向化工生产区的人员定位方法及其应用方案的设计与实现[D].浙江大学, 2018.

[27] 琚倩茜. 面向联合调试的地铁设备系统多属性集成接口管理研究[D].华中科技大学,2017.


l 大数据驱动的工程决策

[1] Aheleroff, S., Xu, X., Lu, Y., Aristizabal, M., Velásquez, J. P., Joa, B., & Valencia, Y. (2020). IoT-enabled smart appliances under industry 4.0: A case study. Advanced Engineering Informatics, 43, 101043.

[2] Bataglin, F. S., Viana, D. D., Formoso, C. T., & Bulhões, I. R. (2020). Model for planning and controlling the delivery and assembly of engineer-to-order prefabricated building systems: exploring synergies between Lean and BIM. Canadian Journal of Civil Engineering, 47(2), 165-177.

[3] Cui, Y., Li, S., Liu, C., & Sun, N. (2020). Creation and diversified applications of plane module libraries for prefabricated houses based on BIM. Sustainability, 12(2), 453.

[4] Marcinkowski, R., & Banach, M. (2020). Computer Aided Assembly of Buildings. Buildings, 10(2), 28.

[5] Wang, Z., Wang, T., Hu, H., Gong, J., Ren, X., & Xiao, Q. (2020). Blockchainbased framework for improving supply chain traceability and information sharing in precast construction. Automation in Construction, 111, 103063.

[6] Xu, Z., Abualdenien, J., Liu, H., & Kang, R. (2020). An IDM-Based Approach for Information Requirement in Prefabricated Construction. Advances in Civil Engineering, 2020, 8946530.

[7] Bortolini, R., Formoso, C. T., & Viana, D. D. (2019). Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling. Automation in Construction, 98, 248-264.

[8] Li, X., Shen, G. Q., Wu, P., & Yue, T. (2019). Integrating building information modeling and prefabrication housing production. Automation in Construction, 100, 46-60.

[9] Li, X., Shen, G. Q., Wu, P., Xue, F., Chi, H. L., & Li, C. Z. (2019). Developing a conceptual framework of smart work packaging for constraints management in prefabrication housing production. Advanced Engineering Informatics, 42, 100938.

[10] Liu, H., Sydora, C., Altaf, M. S., Han, S., & Al-Hussein, M. (2019). Towards sustainable construction: BIM-enabled design and planning of roof sheathing installation for prefabricated buildings. Journal of Cleaner Production, 235, 1189-1201.

[11] Ma, G., Jiang, J., & Shang, S. (2019). Visualization of Component Status Information of Prefabricated Concrete Building Based on Building Information Modeling and Radio Frequency Identification: A Case Study in China. Advances in Civil Engineering, 2019.

[12] Xu, G., Li, M., Luo, L., Chen, C. H., & Huang, G. Q. (2019). Cloud-based fleet management for prefabrication transportation. Enterprise Information Systems, 13(1), 87- 106.

[13] Yoo, M., Kim, J., & Choi, C. (2019). Effects of BIM-based construction of prefabricated steel framework from the perspective of SMEs. Applied Sciences, 9(9), 1732.

[14] Zhao, L., Liu, Z., & Mbachu, J. (2019). Development of intelligent prefabs using IoT technology to improve the performance of prefabricated construction projects. Sensors, 19(19), 4131.

[15] Altaf, M. S., Bouferguene, A., Liu, H., Al-Hussein, M., & Yu, H. (2018). Integrated production planning and control system for a panelized home prefabrication facility using simulation and RFID. Automation in Construction, 85, 369-383.

[16] Chen, K., Xu, G., Xue, F., Zhong, R. Y., Liu, D., & Lu, W. (2018). A physical internet-enabled building information modelling system for prefabricated construction. International Journal of Computer Integrated Manufacturing, 31(4-5), 349-361.

[17] Jang, S., & Lee, G. (2018). Process, productivity, and economic analyses of BIM– based multi-trade prefabrication—A case study. Automation in Construction, 89, 86-98.

[18] Li, C. Z., Xue, F., Li, X., Hong, J., & Shen, G. Q. (2018). An Internet of Thingsenabled BIM platform for on-site assembly services in prefabricated construction. Automation in Construction, 89, 146-161.

[19] 熊超华. 基于社会网络的地铁施工班组行为安全研究[D].华中科技大学,2020.

[20] 方琦. 基于场动力理论的施工工人行为安全智能管理研究[D].华中科技大学,2020.

[21] 董超. 地铁施工动态安全知识地图及可视化研究[D].华中科技大学,2019.

[22] 张永成. 地铁深基坑施工安全专项方案知识重用建模及优化研究[D].华中科技大学,2019.

[23] 周诚. 地铁盾构施工地表变形时空演化规律与预警研究[D].华中科技大学,2011.


l “制造—建造”生产模式

[1] Xu, G., Li, M., Chen, C. H., & Wei, Y. (2018). Cloud asset-enabled integrated IoT platform for lean prefabricated construction. Automation in Construction, 93, 123-134.

[2] Yuan, Z., Sun, C., & Wang, Y. (2018). Design for Manufacture and Assemblyoriented parametric design of prefabricated buildings. Automation in Construction, 88, 13- 22.

[3] Abanda, F. H., Tah, J. H. M., & Cheung, F. K. T. (2017). BIM in off-site manufacturing for buildings. Journal of Building Engineering, 14, 89-102.

[4] Isaac, S., Curreli, M., & Stoliar, Y. (2017). Work packaging with BIM. Automation in Construction, 83, 121-133.

[5] Li, C. Z., Zhong, R. Y., Xue, F., Xu, G., Chen, K., Huang, G. G., & Shen, G. Q. (2017). Integrating RFID and BIM technologies for mitigating risks and improving schedule performance of prefabricated house construction. Journal of Cleaner Production, 165, 1048-1062.

[6] Nascimento, D. L. D. M., Sotelino, E. D., Lara, T. P. S., Caiado, R. G. G., & Ivson, P. (2017). Constructability in industrial plants construction: a BIM-Lean approach using the Digital Obeya Room framework. Journal of Civil Engineering and Management, 23(8), 1100-1108.

[7] Niu, Y., Lu, W., Liu, D., Chen, K., Anumba, C., & Huang, G. G. (2017). An SCOenabled logistics and supply chain–management system in construction. Journal of Construction Engineering and Management, 143(3), 04016103.

[8] Alvarez-Anton, L., Koob, M., Diaz, J., & Minnert, J. (2016). Optimization of a hybrid tower for onshore wind turbines by Building Information Modeling and prefabrication techniques. Visualization in Engineering, 4(1), 3.

[9] Isaac, S., Bock, T., & Stoliar, Y. (2016). A methodology for the optimal modularization of building design. Automation in Construction, 65, 116-124.

[10] Kim, M. K., Wang, Q., Park, J. W., Cheng, J. C., Sohn, H., & Chang, C. C. (2016). Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM. Automation in Construction, 72, 102-114.

[11] Li, C. Z., Hong, J., Xue, F., Shen, G. Q., Xu, X., & Luo, L. (2016). SWOT analysis and Internet of Things-enabled platform for prefabrication housing production in Hong Kong. Habitat International, 57, 74-87.

[12] Feng, C. G., Hu, H., Xu, F., & Yang, J. (2015). An intelligent logistics management model in prefabricated construction. frontiers of engineering management, 2(2), 178-181.

[13] Nath, T., Attarzadeh, M., Tiong, R. L., Chidambaram, C., & Yu, Z. (2015). Productivity improvement of precast shop drawings generation through BIM-based process re-engineering. Automation in Construction, 54, 54-68.

[14] Čuš-Babič, N., Rebolj, D., Nekrep-Perc, M., & Podbreznik, P. (2014). Supplychain transparency within industrialized construction projects. Computers in Industry, 65(2), 345-353.

[15] Luth, G. P., Schorer, A., & Turkan, Y. (2014). Lessons from using BIM to increase design-construction integration. Practice Periodical on Structural Design and Construction, 19(1), 103-110.

[16] 渠立朋. BIM 技术在装配式建筑设计及施工管理中的应用探索[D]. 中国矿业大学

[17] 李敏. 工业化住宅部品通用化技术理论及模数协调应用研究[D]. 北京交通大学

[18] 周烨雯. 基于精益理论的装配式建筑成本管理研究[D]. 华中科技大学

[19] 周锦彬. 基于 BIM 的装配式建筑设计施工协同机制研究[D]. 广东工业大学

[20] 胡丰珺. 基于 BIM 的装配式建筑设计方法与决策支持系统[D]. 西南交通大学

[21] 付菲菲. 低碳施工仿真计量和控制研究[D].华中科技大学,2015.


l 建造服务化

[1] Mariusz Pokorski. The Quality of Construction Services Provided in the Long Term During the Operation and Use of a Building Object[J]. Conference Quality Production Improvement – CQPI,2020,2(1).

[2] Maqsoom Ahsen,Ashraf Hassan,Arif Imran,Umer Muhammad,Nazir Tahira,Najam Muhammad,Shafi Khurram. Internationalization of Construction Service Corporations: Impact of Size and International Experience[J]. IEEE Access,2020,8.

[3] Alexander Gromoff,Nikolay Kazantsev,Julia Bilinkis (Stavenko). An Approach to Knowledge Management in Construction Service – Oriented Architecture[J]. Procedia Computer Science,2016,96(C).

[4] Sun Yan Bin,Fu Han Liang. A System Model for Assessment on Creation Capabilities of Construction Service Enterprises in China[J]. Applied Mechanics and Materials,2013,457-458(457-458).

[5] 陈维亚,姜雨田,彭刚等. 基于空天地一体化监测的道路土方智能化施工服务平台[J].土木工程与管理学报,2021,38(01):112-119.

[6] 杨振,郭小凡.“互联网+”背景下建筑劳务发展研究[J].创新创业理论研究与实践,2020,3(10):124-125+131.

[7] 刘典,王红卫,周洪涛.工程建造服务及其建模[J].工程管理学报,2017,31(06):158-164.

[8] 武光霞. 基于知识价值链的机场全过程进度管理咨询研究[D].华中科技大学, 2021


l 建造平台化

[1] L. Hang, E. Choi, D.H. Kim, A novel EMR integrity management based on a medical blockchain platform in hospital, Electron. 8 (2019). https://doi.org/10.3390/electronics8040467.

[2] J.C.P. Cheng, K.H. Law, H. Bjornsson, A. Jones, R. Sriram, A service oriented framework for construction supply chain integration, Autom. Constr. 19 (2010) 245–260. https://doi.org/10.1016/j.autcon.2009.10.003.

[3] T.H. Shin, S. Chin, S.W. Yoon, S.W. Kwon, A service-oriented integrated information framework for RFID/WSN-based intelligent construction supply chain management, Autom. Constr. 20 (2011) 706–715. https://doi.org/10.1016/j.autcon.2010.12.002.

[4] P. Zheng, Y. Lu, X. Xu, S.Q. Xie, A system framework for OKP product planning in a cloud-based design environment, Robot. Comput. Integr. Manuf. 45 (2017) 73–85. https://doi.org/10.1016/j.rcim.2016.04.001.

[5] M. Das, J.C.P. Cheng, K.H. Law, An ontology-based web service framework for construction supply chain collaboration and management, Eng. Constr. Archit. Manag. 22 (2015) 551–572. https://doi.org/10.1108/ECAM-07-2014-0089.

[6] Y.Y. Cheng, H.J. Shaw, Cloud-based, service-oriented and knowledge-sharing architecture: Its design and application in shipbuilding, Int. J. Comput. Integr. Manuf. 28 (2015) 137–154. https://doi.org/10.1080/0951192X.2013.874587.

[7] D. Wu, D.W. Rosen, L. Wang, D. Schaefer, Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation, CAD Comput. Aided Des. 59 (2015) 1–14. https://doi.org/10.1016/j.cad.2014.07.006.

[8] X.F. Liu, M.R. Shahriar, S.M.N. Al Sunny, M.C. Leu, L. Hu, Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed, J. Manuf. Syst. 43 (2017) 352–364. https://doi.org/10.1016/j.jmsy.2017.04.004.

[9] S. Howell, Y. Rezgui, T. Beach, Integrating building and urban semantics to empower smart water solutions, Autom. Constr. 81 (2017) 434–448. https://doi.org/10.1016/j.autcon.2017.02.004.

[10] F. Tao, Y. Zuo, L. Da Xu, L. Zhang, IoT-Based intelligent perception and access of manufacturing resource toward cloud manufacturing, IEEE Trans. Ind. Informatics. 10 (2014) 1547–1557. https://doi.org/10.1109/TII.2014.2306397.

[11] N. Liu, X. Li, W. Shen, Multi-granularity resource virtualization and sharing strategies in cloud manufacturing, J. Netw. Comput. Appl. 46 (2014) 72–82. https://doi.org/10.1016/j.jnca.2014.08.007.

[12] Y. Cao, S. Wang, L. Kang, C. Li, L. Guo, Study on machining service modes and resource selection strategies in cloud manufacturing, Int. J. Adv. Manuf. Technol. 81 (2015) 597–613. https://doi.org/10.1007/s00170-015-7222-z.

[13] Y. Zhang, D. Xi, R. Li, S. Sun, Task-driven manufacturing cloud service proactive discovery and optimal configuration method, Int. J. Adv. Manuf. Technol. (2016) 29–45. https://doi.org/10.1007/s00170-015-7731-9.

[14] Y. Qian, Y. Jiang, J. Chen, Y. Zhang, J. Song, M. Zhou, M. Pustišek, Towards decentralized IoT security enhancement : A blockchain approach R, Comput. Electr. Eng. 72 (2018) 266–273. https://doi.org/10.1016/j.compeleceng.2018.08.021.

[15] 张艳秋. 智慧建造框架体系与标准化建造服务建模[D].华中科技大学, 2016.

[16] 李孝斌. 云制造环境下机床装备资源优化配置方法及技术研究[D].重庆大学, 2015.



附件1:一、数字建造框架体系

附件2:二、数字建造促进产业变革

附件3:三、基于模型定义的工程产品

附件4:四、工程物联网

附件5:五、大数据驱动的工程决策

附件6:六、“制造-建造”生产模式

附件7:七、建造服务化

附件8:八、建造平台化

附件9:《“数字建造”课程报告》格式要求